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Abstract. In this paper, we present a family of coupled higher-order nonlinear Schrödinger equation de-
scribing the optical soliton pulse propagating in inhomogeneous optical fiber media. The exact N-soliton
solution and its characteristics of stabilities and novel elastic collision properties are studied in detail. As
an example, we give the relative numerical evolutions by a soliton control system to discuss the pulses
propagation characteristics.

PACS. 42.81.Dp Propagation, scattering, and losses; solitons – 42.65.Tg Optical parametric oscillators
and amplifiers – 05.45.Yv Solitons

1 Introduction

Hasegawa and Tappert [1,2] theoretically predicted the
possibility of propagation of envelope solitons in opti-
cal fibers and it was experimentally demonstrated by
Mollenauer et al. [3] in 1980. Since then, numerous inter-
esting research results, both theoretical and experimental
have been reported in the field of optical solitons, as they
are very useful in high speed digital optical fiber communi-
cation [4]. One of the most important models in this area is
the nonlinear Schrödinger equation (NLS) equation, which
describes the propagation of picosecond light pulses in
optical fiber. And when to describe the propagation of
femtosecond light pulses due to their extensive applica-
tions to telecommunication and ultrafast signal-routing
systems, the governing equation is higher-order nonlinear
Schrödinger (HNLS) equation and in recent years, many
authors have analyzed the HNLS equation from differ-
ent points of view and some interesting results have also
been obtained [5–9]. In recent years, the study of coupled
NLS (CNLS) equations is receiving a great deal of at-
tention due to their appearance as modeling equations in
diverse areas of physics like nonlinear optics, optical bire-
fringent effects, optical coupler, coupled mode approach,
Bose-Einstein condensates, etc. [10]. To be specific, soliton
type pulse propagation in multimode fibers and in fiber ar-
rays is also governed by a set of CNLS equations. On the
other hand, the recent studies on the coherent and inco-
herent beam propagation in photorefractive media, which
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can exhibit high nonlinearity with extremely low optical
power, necessitate intense study of CNLS equations [11].

In the area of optical communication, wavelength-
division multiplexing (WDM) using solitons is necessary
to propagate more channels simultaneously and also to
increase the transmission capacity of the communication
system where at least two optical fields are to be trans-
mitted and the system is governed by 2-CNLS equa-
tions [11–13]. In 1974, Manakov [14] proposed a coupled
version of the NLSE (CNLSE) by considering the left-
and right-polarized modes of the propagating electromag-
netic wave and presented the linear eigenvalue problem
associated with the CNLS equations and the soliton solu-
tions using the inverse scattering transform (IST). Later in
1999, Porsezian et al. [15] have generalized the 2×2 AKNS
method to the (2N + 1) × (2N + 1) eigenvalue problem
of N -coupled HNLS equations and in [4] the author in-
vestigated the exact dark soliton solutions for a family of
N-coupled HNLS equations. Then in 2004, we obtained
a new combined solitary wave solution of the 2-coupled
HNLS equations [16].

The concept of soliton control and soliton management
is a new and important development in the application
of solitons. Picosecond soliton control which is described
by the NLS equation with variable coefficients has been
extensively studied theoretically because of its potential
value [17–20]. The studies of femtosecond soliton control,
which is governed by the HNLS equation with variable co-
efficients, also have been widespread [21,22]. And for han-
dling femtosecond optical soliton control in more channels
in inhomogeneous optical fiber media, in this paper, we
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will consider the 2-coupled HNLS equations with variable
coefficients.

The paper is organized in the following sequence. In
Section 2 the 2-coupled HNLS equation with variable co-
efficients is introduced and the linear eigenvalue problem
is given and through which the exact N -soliton solution
was obtained by the well-known Darboux transformation.
Then analytical investigation of the pulse interaction and
numerical evolutions for the pulse propagating in a soliton
control system were given. Section 3 is the concluding one.

2 Models and analysis

The 2-coupled HNLS equation with variable coefficients
may be written as

Ejz +
1
2
iD2 (z)Ejtt +iF (z)

(
2∑

n=1

EnE∗
n

)
Ej +D3 (z)Ejttt

+ M (z)

(
2∑

n=1

EnE∗
n

)
Ejt + N (z)

(
2∑

n=1

EntE
∗
n

)
Ej

+ G (z)Ej = 0 (1)

where Ej (j = 1, 2) is the 2-component electric field. z
and t denote the direction of propagation and time vari-
able respectively. The limitary real functions of D2(z),
D3(z), F (z) and G(z) are respectively the variable second-
order dispersion, third-order dispersion, cross-phase mod-
ulation, amplification or absorption coefficients and the
functions of M(z) and N(z) describe the effects of Kerr
nonlinearity and simulated Raman scattering. Here * de-
notes complex conjugate, and the subscripts in z and t
denote derivatives with respect to z and t.

Now let us consider the linear eigenvalue problem
given as

Φt = UΦ, Φz = V Φ, Φ = (φ1, φ2, φ3)
T (2)

where the superscript T denotes matrix transpose and

U =


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with
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∗
1 + E2E

∗
2 ) E1,

A13 = imE2 tt + 2im3 (E1E
∗
1 + E2E

∗
2 ) E2

A21 = −imE∗
1tt − 2im3 (E1E

∗
1 + E2E

∗
2 ) E∗

1 ,

A31 = −imE∗
2tt − 2im3 (E1E

∗
1 + E2E

∗
2 ) E∗

2

A22 = im2 (E1E
∗
1t − E1, tE

∗
1 ) ,

A32 = im2 (E1E
∗
2t − E1, tE

∗
2 )

A23 = im2 (E2E
∗
1t − E2, tE

∗
1 ) ,

A33 = im2 (E2E
∗
2t − E2, tE

∗
2 )

where m =
√

F/D2. The compatibility condition Uz −
Vt + [U, V ] = 0 gives equation (1) under the restriction
conditions below:

D3 = −D2, M = N = −3F, G (z) =
FzD2 − FD2,z

2FD2
.

(4)
The Lax pair (3) and the restriction conditions (4) give
the integrable conditions of equation (1). The conditions
can also be obtained by the following transformation:

x =
∫ z

0

(ς)dς,
dx

dz
= D2(z),

Ej(z, t) = qj(x, t)

√
D2(z)
F (z)

. (5)

Introducing equation (5) into equation (1) and using the
condition (4), we can obtain

qjx +
1
2
iqjtt + i

(∑
qnq∗n

)
qj − qjttt − 3

(∑
qnq∗n

)
qjt

− 3
(∑

qntq
∗
n

)
qj = 0. (6)

This is the well-known integrable form of coupled Hirota
equations [23].

By far, we have find the integrable condition or one
may call it solvable condition of equation (1). To find its
exact soliton solutions, we have used a simple, straightfor-
ward Darboux transformation based on the linear eigen-
value problem (2) [24] and the detailed processes were
given in Appendix.

According to the standard procedure of Darboux
transformation, we can obtain the N -soliton solution of
equation (1)

E′
1 [N ] = E1 + 2i

√
D2

F

×
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n=1

− (λn − λ∗
n) φ∗
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√
D2

F

×
N∑

n=1
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3[n, λn]φ1[n, λn]

|φ1[n, λn]|2 + |φ2[n, λn]|2 + |φ3[n, λn]|2
(7)
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where

φk[j + 1, λj+1] =
(
λj+1 − λ∗

j

)
φk[j, λj+1]

− Pj

Qj

(
λj − λ∗

j

)
φk[j, λj ]

Pj = φ∗
1[j, λj ]φ1[j, λj+1] + φ∗

2[j, λj ]φ2[j, λj+1]
+ φ∗

3[j, λj ]φ3[j, λj+1]

Qj = |φ1[j, λj ]|2 + |φ2[j, λj ]|2 + |φ3[j, λj ]|2

k = 1, 2, 3; j = 1, 2, ..., n − 1; n = 2, 3, ..., N
and (φ1[j, λj ], φ2[j, λj ], φ3[j, λj ])T is the eigenfunction
of the 2-coupled form of equation (1) corresponding to
λj . Substituting the zero solution of equation (1) into
equation (7), we can systematically obtain multisoliton
solutions for equation (1). Here we present only one- and
two-soliton solutions in explicit forms.

By setting N = 1, taking zero seed solution in equa-
tion (7) and setting the complex spectral parameter λ1 =
(η1 + iξ1)/2, we find that the one-soliton solution is of the
form

E′
j = −

√
D2

F
i (λ1 − λ∗

1)
εj exp (2iϕ1)

cosh (2ϑ1 + T0)
, (j = 1, 2)

(8)
where |ε1|2 + |ε2|2 = 1, T0 is an arbitrary real constant
and

ϑ1 =
1
2
ξ1(3η2
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1
2
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(

1
4
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4
η2
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3
2
ξ2
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2
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1
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2
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(9)

From above expressions, we can see that the imaginary
part ξ1 of the spectral parameter λ1 is mainly dependent
on pulse width and its real part η1 describes the frequency
shift. The phase shift is related to both real and imagi-
nary parts of the spectral parameter λ1, and the initial
position is determined by the parameter T0. From the ex-
pressions (8) and (9), we can find that the velocity of the
soliton is determined by (3η2

1 − ξ2
1 + η1)D2(z), which de-

pends on the variable D2(z) except for the spectral param-
eter λ1. Thus, we can control the velocity of the soliton by
managing the variable second-order dispersion parameter
D2(z) in optical communication systems [19].

When N = 2, taking the zero seed solution and setting
the spectral parameter λk = (ηk + iξk)/2, (k = 1, 2), from
equation (7), we can obtain the two-soliton solution

E′
j [2] = χj

√
D2

F

H

K
, (j = 1, 2) , (10)

where

|χ1|2 + |χ2|2 = 1

H = a1 exp (2iϕ1) cosh (2ϑ2) + a3 exp (2iϕ2) cosh (2ϑ1)
+ ia2 (exp (2iϕ1) sinh (2ϑ2) − exp (2iϕ2) sinh (2ϑ1))

(11)
K = b1 cosh (2ϑ1 + 2ϑ2) + b2 cosh (2ϑ1 − 2ϑ2)

+ b3 cos (2ϕ1 − 2ϕ2) (12)

with
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2
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2
)

,
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(
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2
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1
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2
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,
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(
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1
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2

)
,

b3 = −2ξ1ξ2

ϑk =
1
2
ξk

(
3η2
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k + ηk

) ∫
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1
2
ξkt (13)

ϕk =
(

1
4
ξ2
k − 1

4
η2

k +
3
2
ξ2
kηk − 1

2
η3

k

)

×
∫

D2 (z) dz − 1
2
ηkt, k = 1, 2. (14)

Based on this exact two-soliton solution, we can conve-
niently analyze the transmission properties of two fem-
tosecond optical solitons in inhomogeneous systems. From
the expressions of ϑk and ϕk, we can clearly see that sim-
ilarly to the above results for the one-soliton solution, the
velocity of each soliton in the two-soliton solution (10)
is determined by

(
3η2

k − ξ2
k + ηk

)
D2 (z), which is deter-

mined by both the variable parameter D2 (z) and the spec-
tral parameter λk. The pulse width and frequency shift
are respectively determined by the imaginary part ξk and
real part ηk of the spectral parameter λk. The pulse phase
is also determined by both the variable parameter D2 (z)
and the spectral parameter λk.

Because the solutions include distributed functions,
thus by choosing the form most approximate to the real
state, one can explain different types of soliton control or
dispersion management. Here as an example, we consider
a soliton control system with the second-order dispersion
parameter

D2 (z) = d [1 + c1 sin (σz)] , (15)

and the crossphase modulation parameter

F (z) = f [1 + c2 sin (σz)] exp (−gz) , (16)

where d, σ, ck and g are the parameters of the control
system. Then the amplification or absorption coefficients
can be obtained as

G (z) =
g

2
+

σ (c1 − c2) cos (σz)
2 [1 + c1 sin (σz)] [1 + c2 sin (σz)]

. (17)

We can find that when c1 = c2, we have G (z) = g/2.
Thus the maximal amplitude of the soliton will undergo
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Fig. 1. Pulse evolution plots of one-soliton solution when d =
−1, f = −2, σ = 2, T0 = 0, ξ1 = 0.56, η1 = 0.2, ε1 = ε2 =√

2/2, c1 = 0.4, c2 = 0.5, and (a) g = 0, (b) g = −0.01, (c)
g = 0.01.

the increase (g > 0) or decrease (g < 0) when propagating
along the optical fiber. But for the general case, c1 �= c2,
the maximal amplitude of the pulse will increase (g > 0)
or decrease (g < 0) exponentially and periodically. The
results were illustrated in Figure 1 for one-soliton solution
and in Figure 2 for two-soliton solution. We can see from
the figures that the pulses propagate very stable with all
the characteristics mentioned above. The contour plots of
the one- and two-soliton solution as illustrated in Figure 3
for the case of g = 0. Since we have known that the ve-
locity of each soliton in the two-soliton solution (10) is

Fig. 2. Pulse evolution plots of two-soliton solution when d =
−1, f = −2, σ = 2, T0 = 0, ξ1 = 0.560, η1 = 0.2, ξ2 = −0.562,
η2 = 0.2, χ1 = χ2 =

√
2/2, c1 = 0.4, c2 = 0.5, and (a) g = 0,

(b) g = −0.01, (c) g = 0.01.

determined by
(
3η2

k − ξ2
k + ηk

)
D2 (z), this will leads to a

change of the center position of the soliton along the prop-
agation direction of the fiber and thus it provides a way for
us to design a fiber system to control the soliton velocity.

It is easy to understand that the above stable cases
are only common examples under given parameters condi-
tions. When the parameters conditions changed, the pulse
interaction is inevitably. So it is necessary for us to analyze
asymptomatically the interacting solitons. To do this, the
lengthy forms of the above expressions of H and K with
ϑk and ϕk are useful. And a more explicit manner may be
obtained by observing the expression of the two-soliton
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Fig. 3. Contour plots of the one- and two-soliton solution when
g = 0, the other parameters are the same as those in Figures 1
and 2.

solution when both the solitons are infinitely apart. This
may be achieved by taking the limit ϑk → ±∞. When
we set ϑ2 → +∞, the first component of the two-soliton
solution has the form

E1+
j →

√
b1b2χj

√
D2

F

(a1 + ia2) exp (2iϕ1)
cosh (2ϑ1 + R)

, (18)

where j = 1, 2 and exp (R) =
√

b1/b2. When we set ϑ2 →
−∞, the first component of the two-soliton solution has
the form

E1−
j →

√
b1b2χj

√
D2

F

(a1 − ia2) exp (2iϕ1)
cosh (2ϑ1 − R)

. (19)

Thus we can define the amplitude’s transition matrix for
the first component of the two-soliton solution as

T 1
j =

a1 + ia2

a1 − ia2
. (20)

Similarly, when we set ϑ1 → +∞, the second component
of the two-soliton solution has the form

E2+
j →

√
b1b2χj

√
D2

F

(a3 − ia2) exp (2iϕ2)
cosh (2ϑ2 + R)

(21)

Fig. 4. Pulse evolution plots of elastic collision of two-soliton
solution when d = −1, f = −2, σ = 2, T0 = 0, ξ1 = 0.560,
η1 = 0.2, ξ2 = 0.562, η2 = 0.2, χ1 = χ2 =

√
2/2, c1 = 0.4,

c2 = 0.5, and (a) g = 0, (b) g = −0.03, (c) g = 0.03.

and when we set ϑ1 → −∞, the second component of the
two-soliton solution has the form

E2−
j →

√
b1b2χj

√
D2

F

(a3 + ia2) exp (2iϕ2)
cosh (2ϑ2 − R)

. (22)

Also we can define the amplitude’s transition matrix for
the second component of the two-soliton solution as

T 2
j =

a3 − ia2

a3 + ia2
. (23)

We can easily understand from equations (17) and (20)
that if |T l

j | �= 1, (l = 1, 2), there will have energy ex-
changes at the time of interaction [25]. Other wise, the
solitons will pass through each other without being af-
fected in their shapes and sizes when the collision happens.
The phase shift as a result of collision may be obtained as
2R = ln(b1/b2). Here in this paper, one can easily find that
|T l

j | = 1, (l = 1, 2) is always satisfied, namely, the later
case was always satisfied. The evolution plots were illus-
trated in Figure 4. We can see from the figure that the two
components of the two-soliton solution surely propagate
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Fig. 5. Pulse evolution plots of (a) one-soliton solution, (b)
two-soliton solution under the perturbation of CW solution
whose amplitude is Ajcw = 0.3. The other parameters are the
same as those in Figure 2.

steadily without any energy exchanges even though colli-
sion happened.

It is worth noting that the existence of the soliton solu-
tions obtained above depends on the specific nonlinear and
dispersive features of the medium, which have to satisfy
the condition (4) from which equation (1) can be trans-
formed to the well-known integrable coupled Hirota equa-
tion. This constraint conditions present the strict balances
among the model parameters. In real applications, how-
ever, it may be difficult to produce exactly such balances.
Therefore the study of some cases under the perturbations
is also necessary. Here we provide two types of further re-
searches, one is continuous wave (CW) perturbation and
the other is white noise perturbation. For the given equa-
tion (1), we have found that there is a CW solution, which
is of the form

Ejcw = Ajcw

√
D2 (z)
F (z)

exp
(

i
1
6
t + i

1
108

∫
D2 (z)dz

)
.

(24)
So, we take the initial pulse as Ej = Ejs + Ejcw to do
the numerical simulations, where Ejs is the exact soliton
solution and Ejcw is the CW solution. Generally, Ej is
not an exact solution of equation (1), but since we are

Fig. 6. Pulse evolution plots of (a) one-soliton solution, (b)
two-soliton solution under the perturbation of white noise
whose maximum amplitude is 0.1. The other parameters are
the same as those in Figure 2.

interested in the evolution of the superposition of a bright
soliton pulse and CW solution, the solution of equation (1)
been written as the sum of Ejs and Ejcw is possible [26].
The evolution plots were illustrated in Figure 5a for one-
soliton solution and Figure 5b for two-soliton solution.
The evolution plots when white noise whose maximum
amplitude is 01. is added were illustrated in Figures 6a
and 6b, respectively. From both Figures 5 and 6 we can
see that the pulses are still stable when propagating in
optical fibers.

3 Conclusions

In conclusion, by using of Darboux transformation, we
have solved a family of coupled higher-order nonlinear
Schrödinger equation with variable coefficients, which is
always used to describe the optical soliton propagating in
inhomogeneous optical fiber media and exact N -soliton
solution is obtained in detail. The solutions’ characteris-
tics of stabilities and collisions are discussed analytically
and numerically under a given soliton control system. Our
results are of special application in short optical soliton
propagation systems and the further research should be
an interesting task.
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Appendix

Here we give the standard Darboux transformation to
solve the equation (1).

Rewriting

U =


 −iλ mE1 mE2

−mE∗
1 iλ 0

−mE∗
2 0 iλ


 = iλJ + P (A.1)

where

J =


−1 0 0

0 1 0
0 0 1


 , P =


 0 mE1 mE2

−mE∗
1 0 0

−mE∗
2 0 0


 .

The linear eigenvalue problem is given as

Φt = UΦ, Φz = V Φ, Φ = (φ1, φ2, φ3)
T

. (A.2)

Introducing the transformation

Φ′ = (λI − S)Φ, S = HΛH−1, Λ = diag(λ1, λ2, λ3)
(A.3)

where H is a nonsingular matrix, requiring

Φ′
t = U ′Φ′, U ′ = iλJ + P ′ (A.4)

where

P ′ =


 0 mE′

1 mE′
2

−mE
′∗
1 0 0

−mE
′∗
2 0 0


 .

Then combining equations (A.1–A.4), we can obtain the
Darboux transformation for equation (1) in the form

P ′ = P + JS − SJ. (A.5)

Let
Φ

(j)
t = U1Φ

(j), (j = 2, 3), U1 = iλ∗J + P

where Φ(j) = (φ(j)
1 , φ

(j)
2 , φ

(j)
3 )T . Now we can set H =

(φk, φ
(2)
k , φ

(3)
k ). Write

∆1
1 =

∣∣∣∣∣φ
(2)
2 φ

(3)
2

φ
(2)
3 φ

(3)
3

∣∣∣∣∣ , ∆2
1 =

∣∣∣∣∣φ
(2)
3 φ

(3)
3

φ
(2)
1 φ

(3)
1

∣∣∣∣∣ , ∆3
1 =

∣∣∣∣∣φ
(2)
1 φ

(3)
1

φ
(2)
2 φ

(3)
2

∣∣∣∣∣ .
By straightforward calculation, we can find that
exp(iλt)

(
∆1∗

1 , ∆2∗
1 , ∆3∗

1

)T satisfies Φt = UΦ. So we can
choose Φ in H as above and have ∆j

1 = exp(−iλ∗t)φ∗
j .

Then

Q = detH =
3∑

j=1

φj∆
j
1 = exp(−iλ∗t)

3∑
j=1

φjφ
∗
j

= exp(−iλ∗t)∆.

Setting λ1 = iλ, λ2 = λ2 = iλ∗, and by the definition of
S, we have

S =
 iλ∗ + iλ−λ∗

∆ φ1φ
∗
1 iλ−λ∗

∆ φ1φ
∗
2 iλ−λ∗

∆ φ1φ
∗
3

iλ−λ∗
∆ φ2φ

∗
1 iλ∗ + iλ−λ∗

∆ φ2φ
∗
2 iλ−λ∗

∆ φ2φ
∗
3

iλ−λ∗
∆ φ∗

1φ3 iλ−λ∗
∆ φ∗

2φ3 iλ∗ + iλ−λ∗
∆ φ∗

3φ3


 .

Thus from equation (A.5), we can obtain the other solu-
tions for equation (1) as

R′
1 = R1 − 2

√
D2

F
S12, R′

2 = R2 − 2

√
D2

F
S13. (A.6)

Taking the Darboux transformation N times, we can find
the N -soliton solutions for equation (1) as expressed in
equation (7).
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